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This paper studies several geometric aspects of the Poisson and Gaussian random 
fields approximating Burgers k-2 and Kolmogorov k-8 homogeneous turbulence. 
In  particular, simulated sample scalar iso-surfaces (e.g. surfaces of constant 
temperature or concentration) are exhibited, and their relative degrees of 
wiggliness are shown to be best characterized by saying that the corresponding 
fractal dimensions are respectively equal to 3 - 4 and 3 - Q. 

1. Introduction 
Turbulence in fluids raises a variety of interesting and practically important 

problems of geometry, which have not, so far, received the full attention they 
deserve. The theory of stochastic processes (much influenced, through N. Wiener, 
by Perrin’s (1913) work on Brownian motion and G. I. Taylor’s early papers 
on turbulence) has grasped fully the peculiar and ‘pathological’ shapes of 
randomly generated lines, and either borrowed or developed analytic and geo- 
metric tools to describe this kind of irregularity, But geometry (in contrast to 
analysis) has hardly at  all been applied to the specific random surfaces of tur- 
bulence. This failure is particularly surprising because turbulent shapes are 
readily visualized and therefore almost cry out for proper geometrical description. 
The present paper is one of a series I am in the process of devoting to this goal. 
Two which have appeared (Mandelbrot 1972, 1974) were concerned with inter- 
mittency. The present work, however, which can be read independently, returns 
to  a more traditional context, and investigates certain geometric aspects of the 
random fields of the classic Kolmogorov 1940 theory of homogeneous turbu- 
lence. More precisely, we shall study two approximations. The more familiar is 
the zero-mean random Gaussian field the variance of whose increments obeys the 
8 law. The less familiar approximation, to be called a Poisson field, can also be 
viewed as a (new) algorithm designed to make it possible to simulate the above 
Gaussian field on a computer. The elementary steps of this algorithm may seem 
to have a possible concrete interpretation in terms of ‘shocks’, but will in fact 
turn out to be mere mathematical devices. To give an idea of the geometry, we 
shall exhibit some views of actual simulations of the iso-surfaces of scalar quan- 
tities, such as the surfaces of constant temperature, and shall comment upon their 
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shapes. We shall stress the fact that in the case of Gaussian fields the iso-surfaces 
are convoluted to such an extraordinary extent that it is best to consider them 
as lying ‘in-between’ ordinary surfaces and solids, and more precisely, as having 
a dimension equal to 3. Similarly, although in this case the proof is as yet 
incomplete, it appears that the four-dimensional Euclidean graph of the function 
giving the temperature a t  a point has a dimension equal to 9. The concept of a 
fractional (Hausdorff) dimension has been known in pure mathematics for over 
half a century, a good reference being Rogers (1970). It is particularly potent in 
describing the fme-structure of random functions. However, it remained a 
little-known curiosity, even among mathematicians, and no presentation directed 
towards scientists was attempted until recently (Mandelbrot 1975~) ’  pre- 
sumably because no concrete application was suspected until it was injected 
systematically into natural science, &st through the study of certain noises 
(Mandelbrot 1965)’ then through the shape of the earth’s surface (Mandelbrot 
1967) and ultimately through the study of turbulence (Mandelbrot 1972, 1974), 
where its importance is far from having been exhausted. For reasons I cannot 
describe here, it is preferable to replace the term ‘fractional dimension’ by 
‘fractal dimension ’; the corresponding sets can be called fractals. Different 
applications of fractals to turbulence are described in Mandelbrot (1975d) and 
Scheffer (1975), and in Mandelbrot (1976). 

In the hope of making the structure of the whole argument clearer, it will be 
carried out first for the corresponding Poisson and Gaussian approximations to 
Burgers homogeneous ‘turbulence ’ ; though this is extremely crude as a model, it  
will be so much simpler that it will provide useful insight into reality. For it, 
the fractal dimension of the iso-surfaces is 2.5. 

The discussion will include an application of another concept which used to 
be considered a mathematical curiosity. A scalar Burgers Gaussian field turns 
out to be identical with LBvy’s (1948) independently developed concept of a 
‘Brownian function’ in space; by analogy, we shall propose for the scalar 
Kolmogorov Gaussian field the term ‘fractional Brownian function ’. 

2. The geometry of random scalar fields with Burgers variance and 
with Poisson and Gaussian distributions (Brownian functions of a 
point) 

In  the one-dimensional Burgers model, turbulence has a spectral density 
proportional to k2. At least since von Neumann (1963), it  has been customary to 
apply the term ‘Burgers turbulence ’ also to a collection of step-like discontinui- 
ties in three dimensions. In  the case we shall study first, that of a scalar turbulence 
field, say the temperature B(P)  a t  the point P or the concentration of an inert 
contaminant (see Corrsin 1951)’ this field is such that, given any two points 
P’ and P”, ([B(P’) - B(P”)]) = 0 and ([B(P’) - B(P”)]2)  = I P’P” 1. 

2.1. Poisson Jields 
A precise mathematical model of a Burgers field is the Poisson field, one that 
results from an infinite collection of ‘steps’ (say steps of temperature) whose 
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directions, locations and intensities are given by three infinite sequences of 
mutually independent random variables. The locations can be determined from 
the distances from the planes carrying the steps to  the origin 0, and they must 
form a Poisson sequence of positive numbers R,, which is by definition such 
that the probability of finding one between R 2 0 and R + dR 2 0 is dRIp, with 
,u > 0. The directions of these planes can be determined by those of the altitudes 
drawn to them from 0, and they must be given by a sequence of points H, on the 
unit sphere such that the probability of finding one in any domain of area df3 
is dS/4n.  Finally, the amplitudes can be represented by a sequence of random 
quantities Q, that are arbitrary except that they have a symmetric distribution 
and a finite variance (Q:), which will be assumed to be normalized to unity. 
Because (Vn) = 1, (Q,) is finite, and because of symmetry it must vanish. 
Thus to each there will correspond, first, the point V,  such that m, R, = OH,, 
second, the plane perpendicular to m, through V,, defined as the locus of points 
P such that OP. OH, = R,, and finally, the function D,P(P) that vanishes where 
OP. 0% -c R (in particular, at the point 0), equals Q, where OP. OH, > R, 
and equals +Qn where OP. OH, = R,. Because of this last property and the 
symmetry of the distribution of Q, the distribution of D,P(P) is isotropic. 
Note also that, even if Q is Gaussian, the joint distribution of two or more values 
of D,P(P) is not Gaussian; hence D,P(P) is never a Gaussian field. Adding all 
the contributions D,F(P), one defines a Poisson field as 

-- 
-- -- 

-- 

m 

F ( P )  = 2 D,F(P). 
n=l 

The above construction involves a specific origin 0, but it is easy to see that 
the distribution of the planes of discontinuity is invariant as 0 is moved around. 
The same is therefore true of the field F(P) ,  in the sense that the distribution of 
P(P’) -F(P”) for any two fixed points P’ and P” is invariant. In  particular, the 
number of planes of discontinuity intersecting any bounded domain is almost 
surely finite. When this domain is an arbitrary segment P‘P‘’, the number of 
intersecting planes is a Poisson random variable of expectation hlP‘P“( , where 
h is proportional to p; thus one has (P(P’) - P(P”)) = 0 and 

([F(P’) -S(P”)]2) = hlP’P”J, 
as Burgers wanted. 

The fact that P(P’) -F(P”) is only affected by ‘local’ planes, defined as those 
which intersect P‘P”, expresses that, in one sense a t  least, this field is local; but 
the matter of local versus global properties also has other aspects, to which we 
shall return in $ 4 .  

The probability distribution of a scalar Poisson field depends on the distri- 
bution of Q; as a result, it  is not universal. For example, unless Q itselfis Gaussian, 
the probability distribution of F ( P )  - P(0)  depends strongly - upon the number - of 
contributing terms D,P(P), and hence upon the value of IOPI. For large [OPl, 
the central limit theorem applies, and P(P) -P(O) tends - to  a Gaussian distri- 
bution irrespective of the distribution of Q. For small IOPI, on the contrary, 
P(P) may have a variety of shapes. 

- 
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2.2.  Brownian Jields 

Von Neumann (1963, p. 450) asserted that “It would appear [that the Burgers 
approach] describes a fixed number of shocks of fixed size correctly, but it seems 
questionable whether its conclusions still apply to an asymptotically (with 
time) increasing number of (individually) asymptotically weakening shocks. 
Yet, this is probably the pattern of hydrodynamical shocks in those cases 
where they combine with turbulent motion.” It is not clear which “conclusions” 
the author had in mind, but the mathematical construction of a field made of 
such shocks is not only possible, but easy. Indeed, shortly before von Neumann 
wrote those lines, G v y  (1948) had defined the scalar Brownian function B(P)  
of a point P as the scalar Gaussian field having the characteristic properties that 
{B(P’)-B(P”))  = 0 and {IB(P’) -B(P”)I2) = Ip’p”. First of all, this field is 
clearly the (unique) Gaussianinterpolate of a Burgers field. In  addition, by making 
h into a parameter and denoting the Poisson field by F’(P), B(P)  can be shown 
to be the h+co limit of the infinite sequence of Poisson fields A-*Fk(P). This 
limit process implements fully the notion of an increasing number of increasingly 
weak discontinuities. (The concept of the limit of a random field has many 
different aspects; it suffices there that, for any set of points P,, the probability 
distribution of the vector of co-ordinates h-tPA(Pn) should converge to that of 
the vector of co-ordinates B(P,).) Conversely, the possibility of defining B(P)  
through this limit process eliminates the artificiality (underlined by LBvy) that 
has characterized earlier methods for generating B(P),  and it yields a method 
(not known to LBvy) for performing computer simulations. 

A Brownian field is extremely irregular, but (given the impossibility of four- 
dimensional graphics) this fact cannot be illustrated directly. We may, however, 
study its planar sections. The simplest among them are (anyhow) of independent 
interest, since Mandelbrot (1975a, b )  proposed the function B(x, y, 0) as a crude 
model of the earth’s surface. The rectilinear cross-sections are even simpler, since 
along the x axis, to take an example, B(P)  reduces to the ordinary Brownian 
motion B(x, 0,O). Even more illustrative of B(P) ,  however, is the structure of 
its iso-sets B(P)  = constant, as it is fully exemplified by the set B(P) = 0. 

2.3. Poisson iso-surfaces 
For a continuous function G(P), an iso-surface is a set of points where G takes 
the same value, but this concept does not apply to B(P) ,  because it is not con- 
tinuous. It follows, for example, that the points where B(P)  = 0 reduce almost 
surely to a small volume around 0 bordered by a finite number of planes of 
discontinuity. (However, one may well choose to extend the definition of the iso- 
set P(P)  = 0 to include all the points wbich have a neighbourhood where P 2 0 
and another neighbourhood where F < 0. If one does so, the iso-set almost 
surely includes a surface composed of an infinite number of small bounded pieces 
of plane; in addition, it includes the above small volume near 0. On the other 
hand, if the constant C is chosen at random with a continuous distribution, the 
iso-set F(P) = C is simply a surface.) 
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FIUURE 1. Four successive slices of a computer-generated approximation to the volume 
B(P) > 0, where B(P) is the Gaussian approximation to a Burgers scalar field a t  a point 
P in space. Clearly, these drawings are much too smooth to represent actual turbulence 
(see figure 2), but it has not escaped the author’s attention that they are reminiscent of 
various portions of the earth’s surface: Greece, the Sea of Okhotsk (as seen in a mirror), 
the Gulf of Siam or perhaps Western Scotland. I n  other publications, the author has 
shown that, while such a resemblance is in no way unusual, many other parts of the 
world are smoother, and require a fractional Brownian model with a larger value of H 
than either of the two which occur in turbulence. Note that, although the black and 
white regions are identical in their statistical properties, the white one is by far the larger. 
The above graphs do not include such ‘empty’ portions of the square slices. 

2.4. Cut-offs 

When one takes account of viscosity, the discontinuous functions D,(P), the 
Poisson field and the limiting Brownian field B(P) have no physical meaning. 
Nevertheless, the fine-structure of B(P) is very interesting, and even more so 
the fine-structure of the Gaussian field B*(P) with Kolmogorov variance (see 
$3).  We hope, of course, that this fine-structure is not entirely due to the use of 
the Gaussian approximation, but (being unable to tell) we choose not to worry 
about this. Even in cases where the fine-structure corresponds to inaccessible 
asymptotics, there is a good practical reason for studying it: it simplifies and 
clarifies the he-structures above the cut-off. Such was the opinion of Perrin 
(whom we shall soon quote on a related matter) concerning the importance of 
the fine-structure of Brownian movement. 

In  addition, the Brownian field B(P) has an infinite external scale, which may 
be physically unrealistic, but is very difficult t o  change without modifying the 
model profoundly. 

2.5. Brownian iso-surfaces 
The field B(P) is continuous, so that the set B(P) = 0 is a continuous surface and 
its statistical structure and shape are characteristic of all the iso-surfaces 
B(P) = constant. Figure 1 shows several successive ‘slices’ of an approximation 
to the set B(P) = 0, constructed on the basis of a special Poisson field P(P), 
such that Q, follows an approximation to a Gaussian distribution. The values of 
B(P) were first evaluated over a spatial grid of 513 points; then, because no 
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standard computer routine was available for spatial interpolation, smooth inter- 
polates of the lines where B(P) = 0 were dram separately for each horizontal 
planar grid of 512 points. Hence the smoothness of the line drawn in each of these 
planes is an artifact, and so are the discontinuities seen between the different 
planes. The main feature of the limit field B(P) is that it is isotropic and has no 
intrinsic scale at all; therefore the local detail seen on the surfaces B(P) = 0 
should be disregarded, and replaced by interpolating mentally some reduced- 
scale versions of what we see of the medium-sized and large detail. The result is 
extremely (in fact infinitely) irregular: the biggest visible piece is surrounded by 
blobs, jetsam and flotsam of all shapes and sizes, ‘negative image’ versions of 
which are scattered in its interior; in addition, the outside branches out into 
filaments of every kind penetrating the inside, and conversely. A special hindrance 
to  intuition is that, the distribution of B(P) being symmetric, the zones where 
B(P) > 0 and B(P) < 0, respectively, are statistically identical in their geo- 
metric properties. Nevertheless, the notion that a shape can be qualitatively 
identical to its complement is not as difficult to comprehend as it might seem. 
This is especially true in the present case. Although the regions B > 0 and 
B < 0 have identical expected volumes, the volumes actually observed in a 
sample (more precisely, those of the intercepts of these regions with a large 
sphere of centre 0) may be expected to be quite different. 

Digression. It is interesting, a t  this point, to  quote an excerpt concerning 
colloids from the preface of a classic book, Perrin (1913). 

Consider one of the white flakes that are obtained by salting a soap solution. 
At  a distance its contour may appear sharply defined, but as soon as we draw 
nearer its sharpness disappears. The eye no longer succeeds in drawing B 

tangent at any point on it; a line that at  first sight would seem to be satis- 
factory, appears on closer scrutiny to be perpendicular or oblique to the 
contour. The use of magnifying glass or microscope leaves us just as uncertain, 
for every time we increase the magnification we find fresh irregularities 
appearing, and we never succeed in getting a sharp, smooth impression, such 
as that given, for example, by a steel ball. 

A very reasonable implementation of what Perrin had in mind seems to be 
provided by the surface B(P) = 0. The surface B*(P) = 0 of $4 might be even 
better. Further, the analogy may well go beyond mere geometry; it may be 
that, first, Perrin’s flakes fill the zones where some threshold of concentration of 
soap is exceeded, and second, that said concentration is a manifestation of very 
mature turbulence. 

2.6. Rectilinear cross-sections of the Poisson and Brown iso-surfaces 
As a preliminary, the plane cross-section of B(P) = 0 is an iso-line of B(x, y, 0 )  = 0. 
Thus it is an ocean level line of a crude image of the earth’s surface; hence it is a 
crude image of an ocean coastline (Mandelbrot 1967, 1 9 7 5 ~ ) .  Next, the recti- 
linear cross-section of B(P) = 0 is the set of zeros of ordinary Brownian motion. 
Similarly, the rectilinear cross-section of F(P) = 0 in a Poisson field is the set of 
zeros of a Poisson process. Both barely differ from the zeros of a random walk, 
an example of which is exhibited in Feller (1968, chap. 111, figure 4) and discussed 
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in his 5111.6, to which the reader is referred. Their most striking feature lies in 
their strongly hierarchical nature: they come in clusters, which combine into 
super clusters, then in turn into super super clusters, etc., ad inJinnitum. As 
one views the whole ever more closely, fine detail that seemed like a smooth 
piece of surface gradually decomposes into many separate folds; correspondingly, 
what seemed like an isolated intersection of a smooth surface and a line decom- 
poses into many distinct points. As one comes closer to any of the folds, the same 
process repeats again and again. I n  the case of a Poisson field, the process is 
finite, but in the case of a Brownian field, it  is endless, ever finer folds being 
continually revealed. Finally, in a Poisson or Brownian field that has been 
smoothed to take account of viscosity, a finite number of steps leads to a surface 
that has neither flat portions nor bends. 

2.7. The set B(P) = 0 is fractal and its dimension is 2.5 

Our intuitive feeling for geometPic shape has been trained by the study of pat- 
terns that are enormously simpler than the ones we are now investigating, such 
as threads and veils, or, to use the terminology of Kuo & Corrsin (1972), “blobs, 
rods, slabs and ribbons ”. We therefore experience great difficulty in compre- 
hending and labelling patterns that are extremely irregular. Por example, the 
set B(P)  = 0 is, intuitively, ‘more space filling’ than an ordinary surface or veil, 
but of course is ‘less space filling’ than an ordinary solid. Let us now demonstrate 
that the loose notion of unequal degrees of Ming can be made more rigorous, 
and a t  the same time can be strengthened, by showing that it can be measured 
by a single number D, with a value below 3, to be called a ‘fractal’ (sometimes 
‘fractional’) dimension. This concept (as we have already said) has been featured 
in several papers concerning the intermittency of turbulence, but the results 
obtained there are not required in order to follow the present argument. I 
even believe that acceptance of the concept of D will be promoted if the present 
discussion abstains from referring to earlier applications. Also, in order to 
minimize the technical difficulty, we shall adopt an approach that is somewhat 
unusual and admittedly controversial. Among many near-identical definitions 
of D, we shall pick one that is both intuitive and conducive to a very direct proof. 
The equivalence between this definition and others (which are more usual but 
almost certainly are unknown to the reader) will not be tackled here. 

Let us select in an ‘appropriate fashion ’ (see below) a large, test cube in space, 
whose side L will be the external scale, then let us subdivide it into ( L / T / ) ~  small 
cells, whose side 7 will be the internal scale, and finally, let us count the number 
N ( L , q )  of cells that include at least one point where B(P) = 0. When one pro- 
ceeds in this fashion with an ordinary curve, one that has a well-defined length, 
it can happen that the curve and the test cube do not intersect, in which case 
N(L,  7) = 0; but such cases are without interest. In  other words, the appropriate 
test cubes are those which actually intersect the object being tested, and for 
them one Gnds that N(L,  7) is about L/q (the meaning of ‘is about’ need not be 
discussed here). Similarly, if a test cube is chosen such that it intersects an 
ordinary surface N ( L , q )  is about ( L / v ) ~ .  Finally, with an ordinary solid, the 
appropriate N(L,v)  is about (L /Y )~ .  In  each case, the exponent is simply the 
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Euclidean number of dimensions. With the pattern of points B(P)  = 0, however, 
we shall prove in a moment that ( N ( L ,  7)) = (L/q)&; thus, by analogy with the 
above role of the Euclidean dimension, one may call D = 2-5 the dimension of 
our pattern. It falls below 3 by an amount equal to one-half of the exponent of 
1P’P”I in the variance of B(P’) - B(P”). Let us mention in advance that in the 
Kolmogorov model, to  be discussed in $3, the corresponding dimension will 
follow the same general rule, hence it will be found to be equal to D = 3 = 3 - 4- 
The amount by which this value exceeds 2 is even greater than that for the 
present D = 2.5, and indeed the pattern is even more extremely convoluted. 

Return to thefield B(P) .  In four-dimensional Euclidean space, the set of points 
[z, y, z, B(x, y, z) ]  is fractal, and it has just been proved by Yoder (1974, first 
part of the theorem in the appendix) that its D equals 3-5. Thus, in the present 
case (as in all non-pathological cases of which the author is aware), the fractal 
dimension exhibits the same behaviour under intersection as a Euclidean di- 
mension: it exceeds the dimension of the iso-sets by one. 

2.8. Proof that the set B(P)  = 0 has a dimension 

In  this subsection we shall prove that there exists a constant D such that 
(N(L ,  q)) N (L/q)D. (This argument will continue to hold in 9 3.) In  the next sub- 
section we shall prove that D = 2-5. 

For the first part, we write (N(L /p ) )  as the product of the total number of 
cells (L/q)% and the conditional probability of a cell being non-empty when it has 
been assumed that such is the case for the whole test cube. The said probability, 
to be denoted by f (L, q), is obviously a function of L/p because of the self- 
similarity (scalelessness) of the overall definitions. Let us show that it must in 
fact be of the form (L/7)D-3. Indeed, pick two ratios rl and r2 and consider a 
cell of side ql = r lL  and a subcell in it of side v2 = r1 r2L .  One has 

Pr (subcell being non-empty if one knows cube is non-empty) 
= 33 (subcell being non-empty if one knows cell is non-empty) 

x Pr (cell being non-empty if one knows cube is non-empty). 

Hence f (L, rlr2L) = f ( r l L ,  r1r2L)f(L, rlL). By iteration, f (L, rnL) = [f (L, rL)]*. 
Since rnL = 7, this yields 

Denoting logf(L, rL)/log (l/r) by 3 -D,  we prove f (L, q )  = (L/q)%-= for uertain L 
and 7; the desired result follows by a well-known interpolatory argument. 

logf (L 7) = nbgf(L, rL) = 1% G / Y )  logf(L, rL)/log (I/@ 

2.9. Outlhe of aproof that D = 2-5 
Consider a vertical stack of cells of side 7 within the large cube, and designate by 
Nl(L, q) the number of those which intersect B(P) = 0. It is not hard to believe, 
and we shall assert it without proof, that the conditional probability distri- 
bution of this number, knowing that N ( L , 7 )  > 0, is the same for every stack; 
so is its probability of being non-zero. Since there are such stacks, we see 
that ( N ( L , q ) )  = (..L/q)2(Nl(L,7)), so the result we wish to prove now reads 
(NIL, 7)) N (L/7)Oe5. Next Nl(L, 7) is replaced by a variant defined by drawing, 
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through the centres of all the cells of side 7 in our stack, a ' central line ' made of 
L/q segments of length 7 and counting the number Nr(L,q) of those which 
contain at least one point where B(P) = 0. The function B(P) being continuous, 
we can safely believe that (N,(L, 7)) differs from (N:(L, 7)) only by a random 
factor of the order of unity, independent of L and 7. Moreover, one can write 
(N;"(L,v)) as the product of two factors: (a) the probability that Nl > 0 and 
( b )  the conditioned expectation of NT, to be denoted by ((N:(L, r))) ,  which is 
computed by taking account only of the stacks within which N;" does not 
vanish. To evaluate factor (a), it suffices to project our surface B(P) = 0 onto 
the 'floor' of the big cube; this projection has a well-defined positive area; 
factor (a) is the ratio of this area to L2, is non-zero and has the same value for 
the central lines of all possible stacks. Finally, all that is left to show is that 
factor (b)  is proportional to (L/?)Oe5. This task can be reduced to proving that, 
within a time t after the beginning of a discrete random walk, the expected 
number of its returns to the point of departure is proportional to t*. This last 
fact is well known; see Feller (1968, p. 86, theorem 2). 

2.10. A conjecture 

A stronger result is known for N,*, namely that N,*(L, q)/(N:(L, r ) )  is a universal 
random variable. Doubtless the same is true (but I did not attempt to  prove it) 
of the ratio N(L, v) / (N(L,  7)). If this conjecture were confirmed, one could 
show that the limit lim N ( L ,  ?)/log (L/y) would involve no randomness and 

could serve as an alternative definition of D. This would bring us closer to the 
bulk of the mathematical theory of fractal dimensions, and to all earlier appli- 
cations I made of it, where D was defined either as D = logN/log(L/q) or as 
some limit of this expression for 7 + 0. For example, when attempting to show 
that coastlines are best regarded as curves with a dimension D between 1 and 
2, I argued (a) that a coastline is self-similar, in the sense that one can, by 
selecting N - 1 points on any piece of it, subdivide it into subpieces reduced 
from the whole by a similarity of ratio r,  and ( b )  that, as r-+O,logN/logr-l 
has a limit that serves to define D. In another application, in which I showed 
that certain error patterns are best regarded as set with a dimension D below 
1, it was proved that the counterpart of N(L, v) / (N(L,  7)) is a universal random 
term. 

V-tO 

3. The geometry of random scalar fields with Kolmogorov variance 
and weighted Poisson and Gaussian distributions : fractional Brownian 
functions of a point 

Since Burgers variance does not hold in fluids, the next approximation to be 
considered is the Gaussian field B*(P), with ([B*(P') -B*(P")]) = 0 and the 
Kolmogorov variance ([B*(P) - B*(P")]2) = IP'P''l8. The approximations B(P) 
and B*(P) are special cases, corresponding respectively to H = Q and H = 4, of 
the more general one-parameter family of Gaussian fields B,(P) such that the 
variance of the basic increment is IP'PN12H, with H a constant between 0 and 1. 
The case where the space of the P is a line, and H + + ,  was alluded to by 



410 B. B. Mandelbrot 

Kolmogorov (1940) and has been widely used since the work of Mandelbrot & 
Van Ness (1968), who coined for it the term ‘fractional Brownian process’. 
The case where the space of P is multi-dimensional was briefly alluded to by 
Yaglom (1957) and by Gangolli (1967), and studied in Mandelbrot (1975b). 

Tractional Poisson Jields: s h r p  discontinuity. Let us assume everything said 
about Poisson fields, except that the definition of D,F(P) will be replaced by 
D,F*(P) -D,F*(O), where D,F*(P) vanishes if OP. OH, = R, and elsewhere 
is replaced by 

D,F*(P) = 2-lQnsgn[OP. OH,-R,][OP. OH,-R,]-*. 
If the exponent were 0 instead of -&, one would, up to  an additive factor 

(due to the fact that it  is awkward otherwise to normalize F*(O) to vanish), go 
back to D,F(P). The most striking facts about P*(P) are that P*(P‘) - F*(P”) 
tends to infinity near each discontinuity plane and that it is everywhere affected 
by every one of an infinite number of close or distant discontinuity planes. By 
way of contrast, F ( P )  was only affected by the finite number of planes which 
intersect the segment P’P”. Thus the elementary steps required for the variance 
to follow the 8 law are extremely global. 

Probability distribution in a scalar weighted probability Jield. - Again, as in $2, 
the distribution of F(P)  tends towards a Gaussian one as lOPl -+a. 

Tractional Brownian Jields: continuity. As before, the field h-*F*h(P) is 
defined such that its variance is independent of h and its h -+ 00 limit is a Gaussian 
field, and hence is identical to B*(P). One can prove that this limit is continuous 
(almost surely, almost everywhere), just as was the case for B(P).  This property 
is less obvious here than it was for B(P), because the jumps in h-*D,F(P) 
tended to zero as h+a, while h-kD,T*(P)  remains (for all A )  grossly discon- 
tinuous. (Thus the small steps in the limit are obtained as the form 0.00, rather 
than 0.1.) 

Iso-surfaces. In  the fractional case, the Poisson iso-surfaces are less useful 
than in the Burgers case: first, they are no longer made up of small pieces of 
plane, and second, the fact that F*(P) tends to infinity near one side of each 
plane of discontinuity means that each iso-surface is cut up into small pieces, 
each of them locatedwithin one of the bounded polyhedrons defined by the planes 
of discontinuity. However, these features cease to  be drawbacks in simulations, 
because F*(P) is necessarily interpolated from its values computed on a discrete 
grid. Figure 2 shows several successive ‘slices’ of the volume enclosed by a 
sample fractional Brownian iso-surface. It was obtained by interpolating a 
sample fractional Poisson iso-surface B*(P) = 0, which, again, had been con- 
structed using a Gaussian distribution for the &,. Everything is qualitatively as 
on figure 1, but the irregularity is even more accentuated. 

The fractal dimension of the iso-surface i s  3-+, and that of the surface 
[x, y, z B(z, y ,  z)] is  doubtless eqml to 4-+. All the arguments concerning the 
fractal dimension run exactly as in Q 2 until the point where ((N,(L, 7))) is shown 
to be proportional to (L/V)O.~. The change is that, for the linear cross-sections, 
which are fractional Brownian scalar motions of exponent H ,  this factor equals 
( L / V ) ~ - ~ .  For turbulence, we know that H = Q. 

-- 

-- -- 

- 
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FIUURE 2. Two successive slices of a computer-generated approximation to the volume 
B*(P) > 0, where B*(P) is the Gaussian approximation to a Kolmogorov scalar field. 
Note that (contrary to figure 1) the interpenetrating black and white regions are very 
much alike in their appearance. The resemblance between this graph and ink splotches 
(which almost caused it to be destroyed) enhances the feeling that i t  represents something 
of the actual motion of fluids. 

A sew-similar random field that i s  not Gaussian cannot be approximated by a 
Poissonjeld. The increments of a field P(P) are called self-similar if one can 
rescale them to obtain a function A(IOP1) [P(P) -P(O)] having a distribution 
independent of P. One can show that as a result A (  lOP[) must be a power of 
lOP1, and it  follows for example that the degree of flatness (also the kurtosis) 
of P(P) must be independent of P. Further, one can show that the only self- 
similar Gaussian fields are those of the form B,(P), as above, and that the only 
weighted Poisson fields with a variance of the form (opi2* are again those 
described above. Hence we see that attempts to obtain a non-Gaussian self- 
similar field as the limit of weighted Poisson fields are doomed. I n  $ 5 ,  the field 
P(P) WiIl be replaced by a vector field, which can (and in turbulence must) be 
skew; the warning expressed by this last remark will therefore extend to the 
impossibility of approximating skew fields using Poisson fields. This result 
means that the plane discontinuities used above are mere mathematical devices, 
devoid of physical meaning. This feature might have been suspected, given the 
profoundly nonlinear character of turbulence. The question then arises of 
whether or not the above results concerning the role and value of fractal dimen- 
sions continue to apply to non-Gaussian fields. The answer is not known, and 
it may well remain so until very specific details of the distribution of the field are 
determined. 

- 
- 

- 

4. Degrees of locality in scalar fields 
This section will be devoted to the study of local and global characteristics in 

Gaussian fields having either Burgers or Kolmogorov variance, or more generally, 
having the variance IP'P"12H with 0 < H < 1, called fractional if 2H 4 1.  
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It is a good thing to begin with a visual comparison of the figures in Mandelbrot 
(1975a, c ) ,  which exhibit sample functions of BH(x, y, 0)  for H = Q and +. The 
latter is ‘flatter’, and its strong high-frequency detail overwhelms a weak low- 
frequency background. 

The field B(P) with Burgers variance. All rectilinear cross-sections of B(P), 
say B(z, 0,  0) ,  are classical Brownian motions on a line, which are well known 
to have the Markov property. If one knows B(0, 0, 0) ,  which we may set as equal 
to zero, then all B(z, 0,O) for x < 0 are independent from all B(x, 0,O) for x > 0;  
hence the conditional distribution of B(xo, 0, 0) ,  for a fixed xo > 0, is the same 
if one knows B(x, 0,O) only for 2 = 0, or if, in addition, one knows it for any 
number of points x, < 0 (n 2 1). Also, if one knows B(O,O,O) and B(xo,O,O),  
added information about the value of B(x, 0,O) outside the interval ( 0 , ~ ~ )  does 
not change the conditional distribution of B(x, 0,O) within that interval. For 
example, let us extrapolate and interpolate using the expected value. If it  is 
conditioned by B(0, O , O ) ,  by B(xo, 0,O) and by the values of B(x, 0,O) for any 
number of points inside (0, xo), the extrapolate is equal t o  B(0, 0,O) for x < 0 
and to B(so, 0,O) for x > xo. If it is conditioned by B(0, 0, 0) ,  by B(x0, 0,O) and 
by the values of B(x, 0,O) for any number of points outside (0 ,  xo), the interpolate 
is linear. This last feature is a way of expressing that the local behaviour of 
B(x,  0,O) in any bounded domain on the line is determined by its values on the 
domain’s boundary, plus additional random effects of local nature. 

For the field B(P) in space, the situation turns out to be somewhat different. 
The local behaviour of B(x,O,O) continues to be determined locally, but the 
meaning of the term ‘local’ changes substantially. On the one hand, L6vy (1948) 
showed that, if B(x, y, 0 )  is known on the horizontal plane, its values above and 
below that plane are not independent; in fact they have a strong negative corre- 
lation. Hence knowing thevalueB(0, 0 , z )  does change the distribution of the value 
B(O,O, - z ) .  Similarly, if B(P)is known on a sphere including 0,knowing the value 
B(0, 0 , O )  does change the distribution of B(P) outside the sphere. On the other 
hand, McKean (1963) has shown that if B(P) is known on two non-intersecting 
spheres containing 0, the distributions of B(P) at two points one inside and the 
other outside both spheres are indeed independent; this result is called a two- 
stage Markov property. Thus it remains true that the distribution of B(P) within 
a small bounded domain is determined locally, but one must define this last term 
so as to imply a knowledge of B(P) on a double (not a single) boundary. 

The JieEd B*(P) with Kolmgorov variance. Compared with the spectral density 
k-2 of the Burgers field B(P), the spectral density k-9 of B*(P) is richer in high- 
frequency and poorer in low-frequency harmonics, which indicates that i t  
should, if anything, be even more local. However, this issue deserves a more 
specific examination. We begin again with B*(x, 0,O) as an example of a recti- 
linear cross-section. It is the fractional Brownian random function of one para- 
meter (‘time’). It is non-Markovian to an extreme degree: B*(O, 0,O) = 0 being 
known, the additional knowledge of any value B*(s’, 0,O) (x‘ < 0)  will affect 
strongly the distribution of B(xo, 0, 0), especially when xo = - 2’. A fortiori, the 
same is true of B*(P) in space. However, curiously enough, this feature is fully 
compatibIe with an appropriately weakened concept of what is ‘local’. 
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FIGURE 3. The function Q(x, y, 0) for x > 4. The peak's abscissa is 1: = 1. 
(a) H = a, (b)  H = and (c )  H = 4. 

The $eld B,(P) with IP'P"12H variance. This last characteristic continues to 
hold trueforallGaussianfields, B,(P)suchthat ([BH(P') - BH(P")]2) = 1P'PN12H, 
with 0 c H < 4. The overall effect of knowing BH(0)  = 0 and BH(Po), with 
Po = (xo, 0, 0), can be assessed by examining the conditional expected value of 
BE(P). One finds <[B,(P) - &~H(PO)Il &(Po)) = QBdP,),  with 

- 
Q = "oPI/xo)ae'- ( I P P , I / ~ o ) 2 H l .  
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_1 
- 1  0 1 2 X 

FIGURE 4. The function & ( x ,  0, 0) ,  corresponding to P lying on the line joining 0 and Po. 
To the right (or the left) of x = &, Q is a monotone increasing (or decreasing) function of H .  
Its behaviour for H = 8,  Q and 8 is shown. 

To simplify, we shall henceforth set x,, = 1. When P lies on the line from 0 
to Po, Q reduces to  

Q = -&[1x12HH- II-XI~H]. 

We have already described the behaviour of the function Q when H takes the 
Markov value H = and P lies on the straight line joining 0 and Po. Let us 
extend the examination to other H's and P's. For all H ,  one has Q = 0 along the 
plane x = Q, Q > Ofor x > Q and Q < Ofor 2 < Q. 

More specifically, let H = 4. The iso-&-surfaces are hyperboloids with rota- 
tional symmetry around the x axis. Also, when x > 1 and x2 + y2 + z2 = r2 $ 1, 
one has Q -  x/r, meaning that, within a cone around the x axis, Q is close to its 
upper bound of unity. A perspective view of the surface &(x, y, 0) is shown on 
figure 3(a) .  Its behaviour shows that, when lOPl 9 IOPoI, the conditioned dis- 
tribution of B(P),  knowing B(0) and B(Po), depends strongly upon the precise 
relative positions of P, 0 and Po. Conversely, in some cases, as when x 9 1 and 
y = z = 0, B(P) affects the distribution of B(Po) but not at  all the distribution 
of B(0) -B(Po); in other cases, as when r 9 1, and z is near zero, B(P) affects 
the distribution of QIB(Po) + B(0)] but hardly at all the distribution of B(0) - 

Now let H < 4. Two perspective views of the surface Q(z, y, 0)  and a precise 
graph for y = z = 0 are shown on figures 3 ( b ) ,  3(c) and 4. On the latter, for 
x = 4, Q = 8 and has a slope equal to H x 2I4H (for H = 8, it is equal to 0.84); 
at the points x = 0 and x = 1, it has cusps, but over most of (0, I), it is not too 
far from being straight. When P is on the x axis outside (0, 1), Q tends to zero. 
The same is true going away from 0 along other directions, since it is readily 
seen that, when r2 = x2+y2+z2 9 1, Qw - (x/r)r2H-1. Thus, for H + 4 and 
r > 1, the conditioned distribution of B,(P), knowing BH(0) and BE( Po), depends 

- -  

B(P0). 
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primarily on &[B,(O) + BH(Po)]; knowledge of the precise relative positions of 0, 
P and Poleads only to a second-order correction. Conversely, B,(P) mostly affects 
the local average +[BH(0) +B,(P,,)] and hardly at  all the distribution of B,(O) - 

In  summary, neither B(P) nor BH(P) is strictly local for H -= 4. But from 
certain viewpoints, locality is more marked for B,(P) than for B(P). This is 
already true when H = 6. If H were below the Kolmogorov value i, this 
locality would be even more accentuated. 

The more local behaviour of Q near 0 and Po is also worth dwelling upon, if 
only to confirm it is indeed ‘local ’. This is a region where the expected behaviour 
of B,(P) is even more important in comparison with the random component. 
We see that the local shape is likely to consist of a sharp pit located next to a 
sharp peak, where ‘sharp ’ means extending away to a few times xw This feature 
helps to explain the presence of small pieces of ‘jetsam and flotsam’ observed 
earlier in the paper. 

BH(P0). 

5. The geometry of some random vector fields 
We shall sketch in few words the generalization of the results in $32 and 3 

t o  vector fields with Burgers variance. They may, again, be of assistance in 
building up intuition, but their counterpart for the case of Kolmogorov variance 
is likely to  have very limited use, because skewness is of the essence and there is 
no natural way of building it in using the approach in this paper. For example, 
one can show that the probability distribution in a weighted Poisson field is 
such that, while ([F(P) -F(0)J2)  = [OPleH, ([F(P) -F(O)I3) equals IOP13B-0’5 
if H > 4 and is roughly constant if H < Q. Hence, the skewness of P(P) - P(0)  
unavoidably tends to zero as (OP( increases. 

Brownian vector Jields. A Brownian vector field (normalized, for the sake of 
convenience, to satisfy B(0) = 0) can be defined naturally as a vector B(P) 
such that its normal component and its two tangential components are inde- 
pendent Gaussian random variables of variance proportional to lop(. It is easy 
to  see that the normal component is at most as large as either of the tangential 
ones; this follows from the KBrmh-Howarth (1938) reduction of a correlation 
term to the functions they callf(r, t )  and g(r, t ) .  

Poisson vector jields. Similarly, one can generate a Poisson field such that its 
planar discontinuities have both a normal and a tangential component. 

Brownian limits of Poisson vector Jields. One may construct a Brownian field 
B(P) as a limit lim F,(P) of a sequence of Poisson fields; however, this can only 

be a special Brownian field, because it is readily seen that in the resulting field 
the vector B(P)-B(0) is isotropic at every point; in the Khrmhn-Howarth 
notation, the functions f(x, t )  and g(x, t )  are identical. 

7 

- 

- 

A+co 
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